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The parameter range over which the Rayleigh hypothesis(RH) for optical gratings might be validly applied
to analysis of high power backward wave oscillators has been investigated numerically. It had been pointed out
that from a rigorous mathematical viewpoint, RH was only valid for a shallow corrugation of slow wave
structure(SWS) such thathK0,0.448; here,h andK0 are, respectively, the amplitude and wave number of the
periodicity in a sinusoidal planar grating. We numerically analyze the electromagnetic fields in the axisym-
metric SWS with and without use of RH. The field patterns and eigenfrequency for the SWS are solved
numerically for a givenkz by using the code HIDM(higher order implicit difference method) that is free from
the RH. It is found that, for a deep corrugation,hK0=530.448, using RH is still valid for obtaining the
dispersion relation, although the Floquet harmonic expansion(FHE) fails to correctly represent the field
patterns inside the corrugation. Accordingly, there exists a discrepancy between the validity of using RH for
obtaining dispersion relations and for an exact convergence of FHE everywhere in the SWS.

DOI: 10.1103/PhysRevE.69.056606 PACS number(s): 42.25.Fx, 02.60.Lj, 02.70.Bf, 84.40.Fe

A widely used method for analyzing high power back-
ward wave oscillators(BWO’s) is to represent the electro-
magnetic(EM) fields in the axisymmetric slow wave struc-
ture(SWS) in terms of a Floquet harmonic expansion(FHE).
In this expansion, the EM fields,E andB, with angular fre-
quency v and wave numberkz in axial direction are ex-
pressed in the form,

FE

B
G = o

n=−N

N FEnsrd
Bnsrd Gexp iskznz+ lu − vtd, s1d

wherekzn=kz+nK0, K0 is the wave number of the SWS pe-
riodicity, and n=0, ±1, ±2, . . . ±N is the Floquet harmonic
number. The value ofN, in principle, is infinite. Expansion
similar to Eq.s1d was first introduced by Lord Rayleigh for
diffraction of waves from planar gratingsf1g. He assumed
that the expansion was applicable both outside and inside the
corrugation, and this assumption is known as the Rayleigh
hypothesissRHd. Recently, some mathematicians objected to
our application of Eq.s1d to a particular BWO analysisf2g. It
was argued that our numerical analysis was applied to a deep
corrugation ofhK0=1.67 which is 3.7 times the limiting
value for validity in the RH for a planar sinusoidal grat-
ing, consequently the results were deemed invalid. Here,h
is the amplitude of sinusoidal corrugations in the SWS. It
was somewhat surprising, however, that our analytical re-
sults seemed to be valid even in the casehK0=1.67, where
many BWO experiments and analyses have been carried
out f3g. The paradoxical discrepancy inthe validity be-
tween conventional analyses of high power BWO’s and
mathematical requirement for RH in planar gratings must
be investigated in further details. To respond to this ne-
cessity, EM fields and dispersion relation in the SWS are
numerically analyzed with and without RH for a given set
of size parameters in the present paper.

Doubts concerning the validity of the RH were aroused as
early as the 1950s by Deriugin[4] and Lippmann[5] in the
course of analyzing the problem of diffraction of plane
waves by a periodic grating. The limiting conditions of the
RH for sinusoidal planar gratings were investigated by Petit
[6] and Millar [7]. Yasuura and his collaborators developed
an improved point-matching method for calculating correctly
finite terms of FHE for deeper corrugations thanhK0
=0.448 of sinusoidal planar grating[8,9]. The fundamental
problem involves the location of singularities in the complex
representation of the given profile of the gratings. Berg and
Fokkema have elegantly discussed the method of obtaining
this singularity for various geometries[10,11]. The limit of
validity of Eq. (1) for sinusoidal planar grating is obtained as
hK0,0.448 from the condition that the circle of conver-
gence touches critically the singularity arising from the curve
of the corrugation. The conditionhK0,0.448 is not a uni-
versal condition for RH, but it is applicable only for sinu-
soidal planar gratings. Mathematical reports dealing with the
validity of the RH for empty periodic axisymmetric SWS
used in BWO’s have not appeared up to date. We numeri-
cally investigate the convergence of Eq.(1) for an axisym-
metric SWS with a chosen set of size parameters. We show
that a valid dispersion relation is obtained even athK0=5
30.448, which is much greater than the limiting value 0.448
of the RH for the planar sinusoidal gratings.

Hereafter, we limit ourselves to the analysis of EM fields
with and without using Eq.(1) in sufficiently long metal
axisymmetric SWS without electron beam in which the inner
wall radius is given by,

Rszd = R0 + h cosK0z, K0 = 2p/L, s2d

whereL is the length of periodicity. In the planar gratings
quoted above, the diffracted waves outside do not enter again
into the gratings, so what one has to solve is just a boundary
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value problem. In other words, frequencyv and kz of an
incident plane wave can be chosen independently. In the
present SWS, however, diffracted wave becomes incident
wave again, so,v and wave numberkz are combined by a
dispersion relation. In other words, it is an eigenvalue prob-
lem in addition to a boundary value problem. First, the field
patterns and eigenfrequency for the SWS are solved for a
given kz numerically by using the code HIDMshigher order
implicit difference methodd that is free from the RH. The
HIDM has been constructed to solve numerically in general
algebraic equations, ordinary and partial differential equa-
tions and their coupled equations with high numerical accu-
racy and high numerical stabilityf12g. Discretization error of
the HIDM is, in the present analysis,OsDx9d much higher
than conventional schemes of the Runge-Kutta method that
usually has errorsOsDx4d or OsDx6d. Here,Dx is the element
of difference scheme. An example of EM fields for a quasi-
TE13 mode in the SWS solved by the HIDM is shown in
Fig. 1. Maxwell’s equations are solved numerically in cy-
lindrical coordinates with difference scheme in the axial
direction and the HIDM in the radial direction. Here,R0
=3.6 m,h=1.4 m, andL=4.0 m are chosen in Eq.s2d. The
wave number iskz=0.4K0 that corresponds to a wave-

length of 10 m. The frequency of the EM fields is ob-
tained to be the eigenvalue of79.12 MHz for theassumed
value of kz The EM fields are at the instantt=0.75T,
whereT is the period of oscillation. Cartesian components
of electric field, sad Ex, sbd Ey, and scd Ez are normalized
by the maximum value ofuEu in a period. The periodic
length L is divided into equal 36 segments and equal 72
segments in radial direction from the axis toRszd given by
Eq. s2d. On each grid point, the Cartesian components of
electric field are calculated. The red and green curves are,
respectively, positive and negative contours of the nor-
malized field components, adjacent curves showing differ-
ence in value of 0.1. Dashed black lines show zero value
lines that divide red and green contours. Contour of
uEu=constant is depicted insdd. The values are again nor-
malized by the maximum value ofuEu in a period. Sky
blue, blue and pink curves are, respectively,uEuø1/6,
1/6, uEuø1/2, and 1/2, uEuø1. Electric fields are con-
centrated in the pink regions. It is confirmed that electric
field lines are perpendicular to the metal surface given by
Eq. s2d. It was determined that the HIDM can calculate
various EM modes in the SWS accurately and without
accumulation of numerical errors.

FIG. 1. (Color) Electromagnetic field patterns of the quasi-TE13 mode calculated by difference code scheme HIDM(higher order implicit
difference method) that is free from the Rayleigh hypothesis. Given numerical parameters are shown in the text. In(a) Ex, (b) Ey, (c) Ez and
(d) uEu are, respectively, normalized by the maximum value in one period in the axial direction. The red and green curves in(a)–(c) are,
respectively, positive and negative contours of the normalized field components, each adjacent curves showing difference in value of 0.1.
Contour of normalized values ofuEu=constant are depicted in(d). Sky blue, blue, and pink curves are, respectively, foruEuø1/6,
1/6, uEuø1/2, and 1/2, uEuø1.
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Secondly, we solve numerically the field patterns and
eigenfrequency for the SWS as shown in Fig. 1 for a given
wave numberkz by using FHE Eq.(1). Our method of nu-
merical calculation by FHE is as was shown in Ref.[3] with-
out electron beam. In FHE, the number of terms to calculate
is denoted byN that is the maximum value ofunu in Eq. (1).
Then, coupled simultaneous linear equations including 2N
+1 unknown coefficients of EM fields in Eq.(1) are obtained
from the boundary condition that the tangential components
of RF electric field at the metal surface must be zero. The
dispersion relation betweenv andkz is given by the require-

ment that thes2N+1d3 s2N+1d determinant must be zero.
Once the relation is determined, one can calculate the rela-
tive magnitudes between the 2N+1 coefficients that enable
us to analyze field patterns numerically. The results for TM01
mode Ez=constant contours, calculated by HIDM and by
FHE are compared with each other in Fig. 2 forkz=0.4K0
and for three values ofhK0=0.530.448, 530.448, and 10
30.448. We have chosen here to beN=6 in Eq. (1). In Fig.
2, the values of field are normalized by the value ofEz at z
=0 andr =0. Each contour shows a difference of 0.1 to its
adjacent curve. In Figs. 2(a) and 2(b), the results of HIDM

FIG. 2. (Color) Comparison of the normalized field componentEz with and without Rayleigh hypothesis(RH). Size parameters buth are
R0=3.6 m andL=4.0 m in Eq.(2). (a), (c), and(e) are obtained by the HIDM that is free from the RH, and(b), (d), and(f) are from the RH.
Normalization is to the value ofEz at z=0 andr =0. Each contour shows a difference of 0.1 to its adjacent curve.(a) and(b) are a shallow
corrugation case ofhK0=0.530.448, and both results are exactly identical.(c) and (d) are a relatively deep corrugation case ofhK0=5
30.448, and both results are identical near the axis, but quite different inside the corrugation.(e) and(f) are an extremely deep corrugation
case ofhK0=1030.448, and both results are different everywhere in the slow wave structure.
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and FHE are shown, respectively, for a case of shallow cor-
rugationhK0=0.530.448. Both results(a) and (b) are iden-
tical, and no distinction between them is possible. This fact
means that FHE is exactly valid in this case. The results for
a somewhat deep corrugationhK0=530.448 are compared
in Fig. 2(c) HIDM and (d) FHE. Inside the corrugation, the
field patterns are quite different from each other. In(d) with
FHE, very large values of nonphysical undulatingEz inside
the corrugation are caused by the presence of terms with
modified Bessel functions in Eq.(1). Whereas, in(c) with
HIDM, no such nonphysical fields are found. In order that
Eq. (1) satisfies the boundary condition at the metal surface
exactly, extremely large values of field components are ob-
served between red or green crescent moons at the trough of
corrugation as shown in(d). If the number of digits in nu-
merical computation andN in Eq. (1) are infinitely large,
such nonphysical large undulations are expected to disap-
pear. The number of undulations at the bottom of corrugation
is given byN in Eq. (1). It is noted, however, that the field
patterns outside the corrugation, where beam microwave in-
teraction takes place, coincide quite well with each other in
(c) and(d), even for such a deep corrugation. The results for
an exceedingly deep corrugationhK0=1030.448 are shown
in Fig. 2 (e) HIDM and (f) FHE, respectively. TheEz’s are
different from each other not only inside the corrugation but
also outside near the center axis. This fact suggests that FHE
is completely violated for this case of deep corrugation.

The results of the dispersion relation for TM01 mode cal-
culated by both HIDM and FHE are compared for three val-
ues ofhK0=0.530.448, 530.448 and 1030.448 in Fig 3.
We have chosen again to beN=6 in FHE Eq.(1). In Fig.
3(a), the results of HIDM(black circles) and FHE(continu-
ous curve) are shown, respectively, for the case of shallow
corrugationhK0=0.530.448. Both results are identical, and
no distinction between them is possible. This means that
FHE is exactly valid in this shallow case. The curve has an
exact periodicity ofK0=1.571 m−1 with respect to wave
numberkz that is required by Floquet theorem for any peri-
odic structure. The results for a deep corrugationhK0=5
30.448 are shown in Fig. 3(b) by black circles(HIDM ) and
a curve(FHE). Both results agree well with each other, and
have again correctly a periodicity ofK0=1.571 m−1 with re-
spect to the wave numberkz that is required by Floquet theo-
rem. The FHE is still valid even though Eq.(1) is locally
nonconvergent as is shown in Figs. 2(c) and 2(d) inside the
corrugation. The results for an exceedingly deep corrugation
hK0=1030.448 are shown in Fig. 3(c) FHE with N=4 in
Eq. (1), (d) FHE with N=6 in Eq. (1) and (e) HIDM. In (c)
and(d), the curves no longer satisfy periodicity for the wave
numberkz between 0 andK0=1.571 m−1 that is required by
the Floquet theorem. This fact suggests that FHE becomes
invalid in the deep corrugationhK0=1030.448 for obtaining
the dispersion relation. On the other hand, in(e) HIDM, the
dispersion curve satisfies Floquet periodicity exactly.

The dependence on the numberN of the terms to calculate
correctly FHE in Eq.(1) is investigated in Fig. 4. Here,
eigenfrequenciesv /2p at wave numberkz=0 are calculated
for various values ofN in horizontal axis. In casehK0=0.5
30.448, shown by black circles,N=2 in Eq.(1) is sufficient
to obtainv /2p=30.9 MHz forkz=0 as shown in Fig. 3(a).

In casehK0=530.448, shown by white squares,N=5 is
required to obtainv /2p=29.2 MHz for kz=0 as shown in
Fig. 3(b). In casehK0=1030.448, shown by black triangles,
N=5 is still insufficient to obtainv /2p=22.88 MHz forkz
=0 as shown in Fig. 3(e) calculated by HIDM. In conclusion,
the value ofN must be increased with increase inhK0, even
if the FHE is applicable.

The FHE in Eq.(1) can be a complete set of functions
only for any waves in free space or in rectangular cubes. The

FIG. 3. Comparison of dispersion relation for TM01 mode with
and without the RH. Size parameters buth are the same as those in
Fig. 2. (a) A case of shallow corrugationhK0=0.530.448, and(b)
a case of deep corrugationhK0=530.448. In both(a) and (b),
continuous curves and black circles are, respectively, with and with-
out the RH. Both results coincide sufficiently well, even though in
case of(b) the field patterns are locally incorrect as is shown in Fig.
2(d) given by the RH.(c), (d), and(e) are the case of exceedingly
deep corrugationhK0=1030.448.(c) and(d) are from the RH, and
the results do not satisfy the Floquet periodicity theorem.(e) Black
circles combined with dashed curves are from HIDM, and the re-
sults satisfy the Floquet periodicity theorem exactly.

FIG. 4. The dependence on the numberN of the terms required
to calculate correctly FHE in Eq.(1). Here, eigenfrequenciesv /2p
at wave numberkz=0 are calculated for various values ofN in
horizontal axis. Size parameters buth are the same as those in Fig.
2. The value ofN must be increased with an increase inhK0.

WATANABE et al. PHYSICAL REVIEW E 69, 056606(2004)

056606-4



FHE is an incomplete set of functions to express waves in
the SWS we are considering or in other gratings. For this
reason, it is not strange that the FHE given in Eq.(1) breaks
down to express waves in a case of deep corrugation.

Coincidence of the dispersion relation obtained from Eq.
(1) and that from HIDM up tohK0=530.448 leads us to
assert that the FHE using the RH is valid and works well for
the parameters of SWS beyond the limitationhK0,0.448.
The statement that FHE is valid up to 5 times the limit
hK0=0.448 in planar grating was made previously in Ref.
[13]. For this range, a correct dispersion relation can be ob-
tained, even though there is no convergence of FHE at every
point in the SWS. In other words, the dispersion relation can
be insensitive to a local breakdown of RH in cases of mod-
erately deep corrugation. This result agrees with a general

fact that the eigenvalues converge faster than the fields in
many eigenvalue problems. The analysis of BWO’s using
HIDM can reveal much about higher order modes that are
found to creep along the corrugated surface, whereas such
information is lost if FHE is used. However, the analysis of
HIDM requires huge computation time and resources.
Roughly speaking, one hundred times more computation
time is necessary in using HIDM compared with using FHE.
Equation(1) of the RH is a simple and convenient way to
analyze the SWS in high power BWO’s, if analysis is re-
stricted to lower frequency modes. In the present paper, the
practical range of validity of the RH in the analysis of axi-
symmetric SWS is shown for a chosen set of numerical pa-
rameters. It is important to clarify the limit of validity of the
RH in a more generalized mathematical manner.
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